PyAutoPlot Functions

Available functions:

  • AutoPlot.auto_plot(output_file=None, theme="light", excludes=None, **kwargs): Automatically generate plots based on a given dataset.

  • AutoPlot.plot(plot_type, x=None, y=None, **kwargs): Manually plot data from your dataset.


Auto plot

Automatically generate plots based on a given dataset.

This method produces:
1. Detailed analysis summary as a text-based plot.
2. Numeric visualizations: Histograms, Boxplots, and Pairwise Scatter Matrix.
3. Categorical visualizations: Enhanced Bar Plots and Pie Charts.
4. Time-series visualizations: Line and Stacked Area Plots.

Parameters:
    output_file (str, optional): Base filename for saving plots. Default is None (no saving).
    theme (str, optional): Plot theme ("light", "dark", or a custom dictionary). Default is "light".
    excludes (list, optional): Sections to exclude from plotting, e.g., ["histograms"]. Default is None.
    **kwargs: Additional keyword arguments passed to plot methods.

Examples:
    autoplot.auto_plot(output_file="dataset_output", theme="dark", excludes=["pie_charts"])
circle-info

Scatter plots on large datasets can cause performance issues, use `excludes` to exclude them if necessary.

Function arguments:

output_file: The output file, and format (optional). E.g. output.png will result in a plot with the prefix output and the format png.

theme: Either light or dark, else defaults to light. You can also pass in a custom RCParam dictionary for custom themes.

excludes: A list of plots to exclude. Available plots are: detailed_analysis, numeric, categorical, pairwise_scatter, pie_charts, line_plots, and stacked_area.

**kwargs: Other supported keyword arguments for matplotlib. E.g. color='orange'.

Plot

Manually create a plot based on data within your dataset.

Last updated